If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x-8400=0
a = 2; b = 20; c = -8400;
Δ = b2-4ac
Δ = 202-4·2·(-8400)
Δ = 67600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{67600}=260$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-260}{2*2}=\frac{-280}{4} =-70 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+260}{2*2}=\frac{240}{4} =60 $
| 2x^2+20x+8400=0 | | n-24=n/3 | | 5r/6=7/6 | | x-0.18x=255.56 | | x-0.18x=315.32 | | x-0.18x=280.06 | | .5(y–2)=35 | | x-0.18x=211.96 | | p=10000*(1+0.05)4 | | 12x2+14x+12=18 | | 4t^2+36=24t | | 4x^+19x+17=0 | | 5x-35+60=0 | | 4x-x=400 | | x+(.12*x)=200000 | | 3b^2-2b-1=0 | | x-0.12x=200000 | | 10=1/(0.92+(0.08/x)) | | 3x+0.9(3x)=1 | | 3-n=18 | | 10t^2-20t=45 | | 1,331x3−216=0 | | (-13)-n=13 | | x-258/120=0.85 | | 5p+p=320 | | x-8/2=x-5/6 | | 4c+c=150000 | | x-62000=0.25 | | |3x-1|+5=7 | | Y=(1-10x)(6x+1) | | y^2+2y=-26 | | √3a-6√12a-6=√108a |